Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Dent J (Basel) ; 12(1)2024 Jan 18.
Article En | MEDLINE | ID: mdl-38248224

INTRODUCTION: Prevention of tooth loss contributes to an extended life expectancy, namely longevity. Aging-related oral hypofunction, including tooth loss, markedly increases the risks of functional disorder and mortality. Dysbiosis of the oral microbiome has recently been associated with various diseases, such as liver cirrhosis, pancreatic cancer, colorectal cancer, and inflammatory bowel disease. Therefore, the relationship between the oral microbiome and systemic health has been attracting increasing attention. In the present study, we examined oral function and the oral microbiome in the elderly in a world-leading longevity area. MATERIALS AND METHODS: An oral examination, chewing ability/tongue-lip motor function/saliva tests, and a metagenomic analysis with a 16S rRNA gene-targeting next-generation sequencer were conducted on 78 subjects aged ≥80 years. Twenty-six healthy individuals aged between 20 and 39 years were also investigated as controls. The data obtained were statistically analyzed. The protocol of the present study was approved by the Ethics Review Board of our university (ERB-C-885). RESULTS: Chewing ability, tongue-lip motor function, and saliva volume were normal in elderly subjects with a current tooth number ≥20, but were significantly lower in those with a current tooth number <20. The oral microbiome in elderly subjects with a current tooth number ≥20 and young controls differed from that in elderly subjects with a current tooth number <20. CONCLUSION: Tooth number ≥20 in elderly subjects in the longevity area contributed to the maintenance of both oral function and the diversity of the oral microbiome.

2.
J Funct Biomater ; 13(4)2022 Oct 25.
Article En | MEDLINE | ID: mdl-36412841

The microstructural and molecular-scale variations induced by laser irradiation treatment on human teeth enamel in comparison with synthetic hydroxyapatite (HAp) were examined through Raman microprobe spectroscopy as a function of irradiation power. The results demonstrated that laser irradiation could modify stoichiometry, microstructure, and the population of crystallographic defects, as well as the hardness of the materials. These modifications showed strong dependences on both laser power and initial nonstoichiometric structure (defective content of HPO4), because of the occurrence of distinct reactions and structural reconstruction. The reported observations can redirect future trends in tooth whitening by laser treatment and the production of HAp coatings because of the important role of stoichiometric defects.

3.
Int J Mol Sci ; 23(19)2022 Oct 03.
Article En | MEDLINE | ID: mdl-36233043

This study targets on-site/real-time taxonomic identification and metabolic profiling of seven different Candida auris clades/subclades by means of Raman spectroscopy and imaging. Representative Raman spectra from different Candida auris samples were systematically deconvoluted by means of a customized machine-learning algorithm linked to a Raman database in order to decode structural differences at the molecular scale. Raman analyses of metabolites revealed clear differences in cell walls and membrane structure among clades/subclades. Such differences are key in maintaining the integrity and physical strength of the cell walls in the dynamic response to external stress and drugs. It was found that Candida cells use the glucan structure of the extracellular matrix, the degree of α-chitin crystallinity, and the concentration of hydrogen bonds between its antiparallel chains to tailor cell walls' flexibility. Besides being an effective ploy in survivorship by providing stiff shields in the α-1,3-glucan polymorph, the α-1,3-glycosidic linkages are also water-insoluble, thus forming a rigid and hydrophobic scaffold surrounded by a matrix of pliable and hydrated ß-glucans. Raman analysis revealed a variety of strategies by different clades to balance stiffness, hydrophobicity, and impermeability in their cell walls. The selected strategies lead to differences in resistance toward specific environmental stresses of cationic/osmotic, oxidative, and nitrosative origins. A statistical validation based on principal component analysis was found only partially capable of distinguishing among Raman spectra of clades and subclades. Raman barcoding based on an algorithm converting spectrally deconvoluted Raman sub-bands into barcodes allowed for circumventing any speciation deficiency. Empowered by barcoding bioinformatics, Raman analyses, which are fast and require no sample preparation, allow on-site speciation and real-time selection of appropriate treatments.


Candidiasis , beta-Glucans , Antifungal Agents/pharmacology , Candida auris , Chitin , Glucans , Water
4.
Int J Mol Sci ; 23(15)2022 Jul 22.
Article En | MEDLINE | ID: mdl-35897669

This study presents a set of vibrational characterizations on a nanogel-cross-linked porous freeze-dried gel (NanoCliP-FD gel) scaffold for tissue engineering and regenerative therapy. This scaffold is designed for the in vitro culture of high-quality cartilage tissue to be then transplanted in vivo to enable recovery from congenital malformations in the maxillofacial area or crippling jaw disease. The three-dimensional scaffold for in-plate culture is designed with interface chemistry capable of stimulating cartilage formation and maintaining its structure through counteracting the dedifferentiation of mesenchymal stem cells (MSCs) during the formation of cartilage tissue. The developed interface chemistry enabled high efficiency in both growth rate and tissue quality, thus satisfying the requirements of large volumes, high matrix quality, and superior mechanical properties needed in cartilage transplants. We characterized the cartilage tissue in vitro grown on a NanoCliP-FD gel scaffold by human periodontal ligament-derived stem cells (a type of MSC) with cartilage grown by the same cells and under the same conditions on a conventional (porous) atelocollagen scaffold. The cartilage tissues produced by the MSCs on different scaffolds were comparatively evaluated by immunohistochemical and spectroscopic analyses. Cartilage differentiation occurred at a higher rate when MSCs were cultured on the NanoCliP-FD gel scaffold compared to the atelocollagen scaffold, and produced a tissue richer in cartilage matrix. In situ spectroscopic analyses revealed the cell/scaffold interactive mechanisms by which the NanoCliP-FD gel scaffold stimulated such increased efficiency in cartilage matrix formation. In addition to demonstrating the high potential of human periodontal ligament-derived stem cell cultures on NanoCliP-FD gel scaffolds in regenerative cartilage therapy, the present study also highlights the novelty of Raman spectroscopy as a non-destructive method for the concurrent evaluation of matrix quality and cell metabolic response. In situ Raman analyses on living cells unveiled for the first time the underlying physiological mechanisms behind such improved chondrocyte performance.


Cartilage , Tissue Scaffolds , Cartilage/metabolism , Cells, Cultured , Humans , Nanogels , Spectrum Analysis , Tissue Engineering/methods , Tissue Scaffolds/chemistry
5.
Front Microbiol ; 13: 896359, 2022.
Article En | MEDLINE | ID: mdl-35694304

The multidrug-resistant Candida auris often defies treatments and presently represents a worldwide public health threat. Currently, the ergosterol-targeting Amphotericin B (AmB) and the DNA/RNA-synthesis inhibitor 5-flucytosine (5-FC) are the two main drugs available for first-line defense against life-threatening Candida auris infections. However, important aspects of their mechanisms of action require further clarification, especially regarding metabolic reactions of yeast cells. Here, we applied Raman spectroscopy empowered with specifically tailored machine-learning algorithms to monitor and to image in situ the susceptibility of two Candida auris clades to different antifungal drugs (LSEM 0643 or JCM15448T, belonging to the East Asian Clade II; and, LSEM 3673 belonging to the South African Clade III). Raman characterizations provided new details on the mechanisms of action against Candida auris Clades II and III, while also unfolding differences in their metabolic reactions to different drugs. AmB treatment induced biofilm formation in both clades, but the formed biofilms showed different structures: a dense and continuous biofilm structure in Clade II, and an extra-cellular matrix with a "fluffy" and discontinuous structure in Clade III. Treatment with 5-FC caused no biofilm formation but yeast-to-hyphal or pseudo-hyphal morphogenesis in both clades. Clade III showed a superior capacity in reducing membrane permeability to the drug through chemically tailoring chitin structure with a high degree of acetylation and fatty acids networks with significantly elongated chains. This study shows the suitability of the in situ Raman method in characterizing susceptibility and stress response of different C. auris clades to antifungal drugs, thus opening a path to identifying novel clinical solutions counteracting the spread of these alarming pathogens.

6.
J Inorg Biochem ; 234: 111884, 2022 09.
Article En | MEDLINE | ID: mdl-35716550

In this study, we monitored the effect of Al3+ ions on mesenchymal cells (KUSA-A1) and human fibroblasts (NHDF) by means of in vitro experiments by culturing the cells with addition of small concentrations of aluminum ions (i.e., 0.1, 1, 10, and 100 ppm). Bone formation test was then conducted using KUSA-A1. Small concentrations of aluminum ions delayed but did not completely inhibit cell proliferation. The amount of bone tissue decreased as the concentration of Al3+ increased and crystallinity changes were also detected by Raman spectroscopic experiments. Moreover, Al3+ ions greatly affected both structure and chemistry of bone tissues with mineral nodules becoming larger and atomic substitution of Ca with Al in bone tissue being more preponderant with increasing Al3+ concentration. Such effects in turn impaired the balance between mineral and collagen in the formed bone tissue.


Mesenchymal Stem Cells , Osteogenesis , Aluminum/toxicity , Collagen , Humans , Ions/pharmacology
7.
Int J Mol Sci ; 23(10)2022 May 11.
Article En | MEDLINE | ID: mdl-35628169

Oral candidiasis, a common opportunistic infection of the oral cavity, is mainly caused by the following four Candida species (in decreasing incidence rate): Candida albicans, Candida glabrata, Candida tropicalis, and Candida krusei. This study offers in-depth Raman spectroscopy analyses of these species and proposes procedures for an accurate and rapid identification of oral yeast species. We first obtained average spectra for different Candida species and systematically analyzed them in order to decode structural differences among species at the molecular scale. Then, we searched for a statistical validation through a chemometric method based on principal component analysis (PCA). This method was found only partially capable to mechanistically distinguish among Candida species. We thus proposed a new Raman barcoding approach based on an algorithm that converts spectrally deconvoluted Raman sub-bands into barcodes. Barcode-assisted Raman analyses could enable on-site identification in nearly real-time, thus implementing preventive oral control, enabling prompt selection of the most effective drug, and increasing the probability to interrupt disease transmission.


Candida , Candidiasis, Oral , Candida/chemistry , Candida/genetics , Candida albicans , Candidiasis, Oral/diagnosis , Chemometrics , Spectrum Analysis, Raman/methods
8.
Front Microbiol ; 12: 769597, 2021.
Article En | MEDLINE | ID: mdl-34867902

Invasive fungal infections caused by yeasts of the genus Candida carry high morbidity and cause systemic infections with high mortality rate in both immunocompetent and immunosuppressed patients. Resistance rates against antifungal drugs vary among Candida species, the most concerning specie being Candida auris, which exhibits resistance to all major classes of available antifungal drugs. The presently available identification methods for Candida species face a severe trade-off between testing speed and accuracy. Here, we propose and validate a machine-learning approach adapted to Raman spectroscopy as a rapid, precise, and labor-efficient method of clinical microbiology for C. auris identification and drug efficacy assessments. This paper demonstrates that the combination of Raman spectroscopy and machine learning analyses can provide an insightful and flexible mycology diagnostic tool, easily applicable on-site in the clinical environment.

9.
Int J Mol Sci ; 22(12)2021 Jun 11.
Article En | MEDLINE | ID: mdl-34208313

Intrahepatic cholangiocarcinoma (iCCA) is a heterogeneous bile duct cancer with a poor prognosis. Integrin αvß6 (ß6) has been shown to be upregulated in iCCA and is associated with its subclassification and clinicopathological features. In the present study, two ITGB6-knockout HuCCT1 CCA cell lines (ITGB6-ko cells) were established using the clustered regulatory interspaced short palindromic repeats (CRISPR), an associated nuclease 9 (Cas9) system, and single-cell cloning. RNA sequencing analysis, real-time polymerase chain reaction (PCR), and immunofluorescent methods were applied to explore possible downstream factors. ITGB6-ko cells showed significantly decreased expression of integrin ß6 on flow cytometric analysis. Both cell lines exhibited significant inhibition of cell migration and invasion, decreased wound-healing capability, decreased colony formation ability, and cell cycle dysregulation. RNA sequencing and real-time PCR analysis revealed a remarkable decrease in podocalyxin-like protein 2 (PODXL2) expression in ITGB6-ko cells. Colocalization of PODXL2 and integrin ß6 was also observed. S100 calcium-binding protein P and mucin 1, which are associated with CCA subclassification, were downregulated in ITGB6-ko cells. These results describe the successful generation of ITGB6-ko CCA cell clones with decreased migration and invasion and downregulation of PODXL2, suggesting the utility of integrin ß6 as a possible therapeutic target or diagnostic marker candidate.


Cell Adhesion Molecules/metabolism , Cell Movement , Cholangiocarcinoma/pathology , Gene Knockout Techniques , Integrin beta Chains/genetics , Sialoglycoproteins/metabolism , Adult , Aged , Aged, 80 and over , Calcium-Binding Proteins/metabolism , Cell Adhesion Molecules/genetics , Cell Cycle , Cell Line, Tumor , Cell Movement/genetics , Cholangiocarcinoma/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Integrin beta Chains/metabolism , Male , Middle Aged , Neoplasm Invasiveness , Neoplasm Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sialoglycoproteins/genetics , Tumor Stem Cell Assay , Up-Regulation/genetics
10.
Materials (Basel) ; 13(21)2020 Oct 31.
Article En | MEDLINE | ID: mdl-33142858

Tooth loss impairs mastication, deglutition and esthetics and affects systemic health through nutritional deficiency, weight loss, muscle weakness, delayed wound healing, and bone fragility. Approximately 90% of tooth loss is due to dental caries and periodontal disease. Accordingly, early treatment of dental caries is essential to maintaining quality of life. To date, the clinical diagnosis of dental caries has been based on each dentist's subjective assessment, but this visual method lacks objectivity. To improve diagnostic ability, highly sensitive quantitative methods have been developed for the diagnosis and prevention of dental caries and are gradually becoming a mandatory item in modern dentistry. High-resolution Raman spectroscopy is a suitable tool for recognizing the subtle structural changes that occur in dental enamel in already developed or, more importantly, incipient dental caries. Raman analysis could soon emerge as a breakthrough in dentistry because of its high diagnostic sensitivity. In this study, we build upon our previous findings in a new analysis of dental caries using Raman spectroscopy imaging and discuss the possibility of using Raman photonic imaging in support of objective diagnostics in dentistry. Our findings support the Raman method of caries detection in comparison with other conventional or new approaches.

11.
Materials (Basel) ; 13(19)2020 Sep 25.
Article En | MEDLINE | ID: mdl-32992758

The transplantation of engineered three-dimensional (3D) bone graft substitutes is a viable approach to the regeneration of severe bone defects. For large bone defects, an appropriate 3D scaffold may be necessary to support and stimulate bone regeneration, even when a sufficient number of cells and cell cytokines are available. In this study, we evaluated the in vivo performance of a nanogel tectonic 3D scaffold specifically developed for bone tissue engineering, referred to as nanogel cross-linked porous-freeze-dry (NanoCliP-FD) gel. Samples were characterized by a combination of micro-computed tomography scanning, Raman spectroscopy, histological analyses, and synchrotron radiation-based Fourier transform infrared spectroscopy. NanoCliP-FD gel is a modified version of a previously developed nanogel cross-linked porous (NanoCliP) gel and was designed to achieve highly improved functionality in bone mineralization. Spectroscopic imaging of the bone tissue grown in vivo upon application of NanoCliP-FD gel enables an evaluation of bone quality and can be employed to judge the feasibility of NanoCliP-FD gel scaffolding as a therapeutic modality for bone diseases associated with large bone defects.

12.
ACS Chem Neurosci ; 11(15): 2327-2339, 2020 08 05.
Article En | MEDLINE | ID: mdl-32603086

The myelinating activity of living Schwann cells in coculture with neuronal cells was examined in situ in a Raman microprobe spectroscope. The Raman label-free approach revealed vibrational fingerprints directly related to the activity of Schwann cells' metabolites and identified molecular species peculiar to myelinating cells. The identified chemical species included antioxidants, such as hypotaurine and glutathione, and compartmentalized water, in addition to sphingolipids, phospholipids, and nucleoside triphosphates also present in neuronal and nonmyelinating Schwann cells. Raman maps at specific frequencies could be collected, which clearly visualized the myelinating action of Schwann cells and located the demyelinated ones. An important finding was the spectroscopic visualization of confined water in the myelin structure, which exhibited a quite pronounced Raman signal at ∼3470 cm-1. This peculiar signal, whose spatial location precisely corresponded to a low-frequency fingerprint of hypotaurine, was absent in unmyelinating cells and in bulk water. Raman enhancement was attributed to frustration in the hydrogen-bond network as induced by interactions with lipids in the myelin sheaths. According to a generally accepted morphological model of myelin, an explanation was offered of the peculiar Raman scattering of water confined in intraperiod lines, according to an ordered hydrogen bonding structure. The possibility of concurrently mapping antioxidant molecules and compartmentalized water structure with high spectral accuracy and microscopic spatial resolution enables probing myelinating activity and might play a key-role in future studies of neuronal pathologies. Compatible with life, Raman microprobe spectroscopy with the newly discovered probes could be suitable for developing advanced strategies in the reconstruction of injured nerves and nerve terminals at neuromuscular junctions.


Myelin Sheath , Schwann Cells , Neuromuscular Junction , Neurons , Peripheral Nerves
13.
J Biosci Bioeng ; 125(6): 695-702, 2018 Jun.
Article En | MEDLINE | ID: mdl-29373308

Oleaginous microbes can convert substrates such as carbon dioxide, sugars, and organic acids to single-cell oils (SCOs). Among the oleaginous microorganisms, Lipomyces starkeyi is a particularly well-suited host given its impressive native abilities, including the capability to utilize a wide variety of carbon sources. In this work, the potential of L. starkeyi NBRC10381 to produce SCOs in a synthetically nitrogen-limited mineral medium (-NMM) was investigated by differing the inoculum size using glucose and/or xylose as a carbon source. Fermentation using glucose and xylose as mixed carbon sources generated the highest production of biomass at 40.8 g/L, and achieved a lipid content of 84.9% (w/w). When either glucose or xylose was used separately, the totals for achieved lipid content were 79.6% (w/w) and 85.1% (w/w), respectively. However, biomass production was higher for glucose than for xylose (30.3 vs. 28.7 g/L, respectively). This study describes the first simultaneous achievement of higher levels of cell mass and lipid production using glucose and/or xylose as the carbon sources in different inoculum sizes.


Glucose/metabolism , Lipomyces/cytology , Lipomyces/metabolism , Oils/metabolism , Xylose/metabolism , Biomass , Cell Count , Fermentation , Lipids/biosynthesis , Lipomyces/growth & development
14.
Vet Rec Open ; 4(1): e000218, 2017.
Article En | MEDLINE | ID: mdl-29018532

The prescription data from a digital accounting system of a veterinary teaching hospital collected between 2008 and 2011 in Japan were downloaded, stored in a database and analysed using a statistical analysis software, SAS. Seventy-six per cent of all prescriptions were drugs approved for human beings. The most frequently prescribed category was 'Agents against pathogenic organisms', such as antibiotics and chemotherapeutic agents, followed by 'Cardiovascular agents'. Seventy-five per cent of prescribed oral formulations in the category 'Agents against pathogenic organisms' were drugs approved for human beings, while 78 per cent of the injectable prescriptions were those for veterinary. A total of 36 oral antipathogenic products were prescribed, and among them amoxicillin was prescribed the most, followed by cephalexin for human beings and enrofloxacin for veterinary. The pattern of cyclosporin prescription, which is the most prescribed product other than 'Agents against pathogenic organisms', was surveyed. The capsule formulation was primarily used for dogs, while oral solutions were preferably used for cats. This pilot study is the first analytical data of real prescription in hospitals in Japan and one of the longest surveys in veterinary world.

15.
J Hand Surg Asian Pac Vol ; 22(3): 388-390, 2017 Sep.
Article En | MEDLINE | ID: mdl-28774237

Ulnar nerve neuropathy is a rare complication following the carpal tunnel release. Above all, compression neuropathy is much rare. We report an acute ulnar nerve neuropathy following open carpal tunnel release due to the volar and ulnar displacement of the flexor tendons from the carpal tunnel and review the literature.


Carpal Tunnel Syndrome/surgery , Postoperative Complications/etiology , Tendon Injuries/etiology , Ulnar Neuropathies/etiology , Aged , Carpal Tunnel Syndrome/complications , Humans , Male
16.
Skeletal Radiol ; 45(10): 1409-12, 2016 Oct.
Article En | MEDLINE | ID: mdl-27477295

Fracture of the humeral medial epicondyle is a relatively common injury in children. Surgery is a good option for treatment, but correct diagnosis is important. Most fractures occur after the ossification of the medial epicondylar apophysis. If a fracture occurs before the ossification of the medial epicondyle, it is undetectable by radiographs. Here we report a case of an unossified medial epicondyle fracture of the humerus. A 9-year-old boy had persistent pain in the medial side of the right elbow after a fall. Despite his pain, he could move his injured elbow with a range from 60 to 90°. Radiographs and computed tomography showed neither fracture nor dislocation in the injured elbow, and soft tissue swelling was the only finding. Neither the trochlea nor the medial epicondyle was ossified. Magnetic resonance imaging showed that the medial epicondyle was separated from the medial metaphysis and displaced. This clear finding led us to surgical fixation. Under general anesthesia, valgus stress showed gross instability of the injured elbow. Two years after the operation, he had no complaints and could play sports with the same range of motion as the left elbow. It is important to keep in mind that medial epicondylar fractures may be hidden in a normal radiograph before the ossification of the medial epicondylar apophysis.


Elbow Injuries , Elbow Joint/diagnostic imaging , Humeral Fractures/diagnostic imaging , Humeral Fractures/surgery , Magnetic Resonance Imaging/methods , Child , Diagnosis, Differential , Elbow Joint/surgery , Humans , Male , Treatment Outcome
17.
Chem Pharm Bull (Tokyo) ; 61(1): 8-15, 2013.
Article En | MEDLINE | ID: mdl-23302582

To increase the absorbed amount of a drug from dissolving microneedles (DMs), three DM array chips were prepared in which (1) the drug was localized at the acral portion of DMs, (2) the drug was loaded in each whole DM, and (3) the drug was loaded in DMs and the chip. Fluorescein free form (FL) and its sodium salt (FLNa) were used as model drugs. The DM array chip had 15-mm diameter with 225 DMs, each 500-µm long with a 300-µm diameter base. The respective FLNa contents in the three chips were (1) 0.18±0.03, (2) 0.64±0.07, and (3) 10.95±1.07 mg. The FL contents were (1) 0.20±0.01, (2) 0.68±0.03 and (3) 12.47±1.01 mg. The in vitro release of fluorescein from FLNa DMs was faster than that from FL DMs. In vitro permeability experiments showed that (3) produced the greatest increase in the permeability of fluorescein through rat skin, especially in FLNa loaded DMs. In vivo rat absorption study by application of DM array chips to the rat abdominal skin for 6 h demonstrated that the systemically absorbed amount of fluorescein increased from 0.18±0.02 mg, 0.53±0.19 mg, to 5.38±1.99 mg from systems (1) and (2)-(3). By decreasing the application time of DMs to the rat skin, the absorbed amount of fluorescein decreased along with the application time. The physiological state of the skin recovered within 30 min after chip removal. Using a type (3) DM array chip, more than 1.0 mg of water-soluble drug can be delivered to the systemic circulation.


Drug Delivery Systems/instrumentation , Fluorescein/administration & dosage , Skin Absorption , Skin/metabolism , Administration, Cutaneous , Animals , Drug Delivery Systems/methods , Equipment Design , Fluorescein/pharmacokinetics , Male , Needles , Rats , Rats, Wistar
...